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This study demonstrates the grouping of the ECA Rules using
information-theoretic measures in light of Wolfram’s classification of
ECA, with 88 rule equivalence classes. A formal qualitative behavior
of the space-time diagrams for different rules gives rise to the macro-
scopic parameters, whose quantified (numerical) evaluation provides
an opportunity for further analysis through machine learning-based ap-
proaches to extract interesting patterns. In this study, analysis has been
done for a fixed single-cell scenario for different numbers of cells and
iterations, with additional experiments for difference analysis with ran-
dom inputs. This study is based on the prior studies by Borriello, and
Chliamovitch. Adverting to the prior expositions, Hector Zenil has done
pioneering work in algorithmic probability and analyzed information
dynamics of cellular automata from different perspectives. This study,
however, analyzes at the level of rules; therefore, we use the concept
of BiEntropy, which was proposed by Grenville J. Croll to compute
approximate information content of a binary string (see Eq. 1).

H(p) =
1

2n−1 − 1

n−2∑
k=0

(−p(k) log2 p(k)− (1− p(k)) log2(1− p(k)))2k

(1)

The amount of information processed by a CA rule in a space-time patch
is captured through four measures.

• DiffEntropy (DE): Maximum absolute difference in the BiEntropy val-
ues of any reachable configuration (Cj) from the initial configuration
(Ci), e.g.,

DE = Max(abs(BiEntropy(Cj)−BiEntropy(Ci))) (2)

This parameter captures the impact of the transformation carried out
by a rule.

• SimConfigOrdered (SCO): Count the similar BiEntropy values (based
on a threshold value, i,e, 0.01) of two configurations in a sorted list of
entropy values.

SCO = BiEntropy(Ci)−BiEntropy(Cj) (3)

This parameter captures the frequency of similar (information content-
wise) reachable configurations during processing.

• SimConfigImmediate (SCI): Count the similar BiEntropy values
(based on a threshold value, i,e, 0.01) of two successive configurations.

SCI = BiEntropy(Ci)−BiEntropy(Ci+1) (4)

• SimConfigFluctuation (SCF): Count the fluctuations in the BiEntropy
values (where DE/2> 0.01) of two successive configurations.

SCF = abs(BiEntropy(Ci)−BiEntropy(Ci+1)) > DE/2
(5)

This parameter captures the higher fluctuations (> DE/2) of successive
reachable configurations during processing.

Category-I

• Entropy (BiEnrtropy values) does not change, though string may get
change (like in Rule 51); because change still leads to a pattern (like
1’s complement in the case of Rule 51), the entropy value remains the
same.

• All rules (strong) of Category-I are characterized by the zero DE, SCI,
and SCF values with very high SCO values.

Category-II

• Entropy (BiEntropy values) stabilizes (string either becomes all zero’s
or a well-observed pattern) from initial high or fluctuating entropy
values.

• Rules with a strong association of Category-II characterized by the low
to high DE and very high SCO values with zero and one value of SCI
and SCF values respectively, whereas, for weak associations, DE and
SCO values are usually high with low SCI and SCF values.

Category-III

• Entropy (BiEntropy values) values fluctuate or result in a periodic be-
havior (BiEntropy values usually remain high) from initial high or
fluctuating entropy values.

• All Rules (strong and weak) of Category-III are characterized by the
low to high DE and very high SCO values with low to medium SCI
and SCF values values (except for Rule 1 and 33, wherein pretty high,
e.g., 79, SCI and SCF values alternates)

Category-IV

• Entropy (BiEntropy values) exhibit chaotic beahiour with smaller cell
sizes ( value of n), which stabilizes as n increases (i.e., n = 32).

• All Rules of Category-IV are characterized by the low to high DE and
high SCO values with very low SCI and low to high SCF values.

Category-V

• Rules in Category-V exhibit mixed behavior ( of previous categories)
with different values of cell length ( value of n).

• None of these rules showed a zero value (zero indicates a high level of
overlapping) of DTW analysis with any other rule.

Table 1: Category-wise variation in the four measurements (i.e., DE,
SCO, SCI, and SCF)

Category DE SCO SCI SCF
I 0 very high 0 0
II low to high very high 0 1
III low to high very high low to medium low to medium
IV low to high high low low to high
V Mixed
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In this project we were interested in the use of 2 dimension cellular au-
tomata in social sciences , we were very flexible in the last point as we
also inculed models in urban modeling.We also did not restrict ourselves
to the formal definition of cellular automata as we considered also in-
teresting models that may be considered close to cellular automata. We
realized programs for all models

Schelling’s model of segregation is a model developed by economist
Thomas Schelling. Consider two social categories (State 1 , State 2 ).
At each step a cell will check if the rate of its neighbors corresponding
to the same social category is higher than a threshold Ba.If so than the
cell remain unchanged otherwise the cell will migrate if an empty place
is available. Many criterion may be applied to find a suitable migration
place it ranges from just finding the nearest empty place to finding a
complete ideal place i.e. where the cell has no more need to migrate.

Example 1 Update the indicated cell according to rates (1) 40% and (2)
75%. If we want to update the cell indicated in the Figure. 1a, we have
the following situations :

1. Rate 40% : Here the cell has 4 neighbors in the same social category
so in this case the cell will remain unchanged.

2. Rate 70% : Here our cell needs 7 neighbors in the same social category
so in this case the cell will migrate.

While studying the dynamic Schelling established that there is a value
Bseg such that if Ba < Bseg then the population will be "uniformly"
distributed i.e. the two categories are mixed and if Ba ≥ Bseg you have
a compact block distribution i.e. islands type configurations.

The value Bseg is estimated in to be Bseg = 5
9
≈ 0.55.56 %.

Definition 0.1. Consider the cellular automaton on the alphabet {0, 1, 2}
defined by

Seg (xij) =

 xij if
i+1∑

k=i−1

i+1∑
k=i−1

χ{xij} (xkl) ≥ r.9

0 else

where r ∈ [0, 1] is the segregation rate and χ is the characteristic func-
tion . Here 0 stands for empty state and 1,2 for social categories 1,2
respectively.

Definition 0.2. Consider the function Mig : {0, 1, 2}Z → {0, 1, 2}Z
defined by :

Mig (x)i,j =

 if Seg (xij) ̸= 0 then

∣∣∣∣∣∣
r = 1
if ∃xlm = 0 ∈ Vr (xij) then xlm ← xij and xij ← 0
else r ← r + 1

xij if Seg (xij) = 0

notice that we are using a local rule with unbounded radius.

In our program we used the following color scheme Green = social group
1 ; White = social group 2, we added another state empty (0 = red square)
If after applying the local rule a cell aij has to migrate then we find
an empty cell amn elsewhere, then amn takes the value aij and aij is
switched to empty state.The following figure represents two typical con-
figurations we find in simulations after some iterations and if the rate

is higher than 55% the configuration space is successively homogenized
(see in Figure. 1b and Figure. 1c).

(a) (b)

(c) (d)

(e) (f)

Figure 1: (b) Rate 45% Number of iterations : 40; (c) Rate 80% Number
of iterations : 40 ; (d) Black boxes highlights surrounded cells; (e) From
upper line from left the 4 first iterations of the model for Sb = 10 red
pixel = Dl, green pixel = SL; (f)From upper line from left the 4 first
iterations of the model for Sb = 10 red pixel = Dl, green pixel = SL;

We considered an asynchronous version of the Schelling model, In this
model we consider that each cell decide to migrate depending on time.
In our program, we used a random time generator for each cell and a
program parameter named "time" when the random generator give a
value greater than "time" then the state cell is updated. During simu-
lations and because of randomness of migration the configurations will
not be homogenized as in the synchronous model , some cells may re-
main unchanged despite begin "surrounded" by islands of different social
categories, see the Figure. 1d.

Considering the case of Algeria in many geographical regions there is
a social pressure to maintain the amazing language (Kabylie region,
Chaouia region and in the desert among Touareg population) the pres-
sure is somewhat less or in existent in other regions. Here we consider a
partition of the lattice depending of the geography of the country, on each
element of the partition we define a version of the cellular automaton S
but with adequate parameters.
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This project focuses on developing a model that can accurately simulate
COVID-19’s global dissemination patterns. We utilize cellular automa-
ton (CA) to build such a model. In this project, a new variant of CA
called Temporary Stochastic Cellular Automata (TSCA) is used, where
two rules is being utilized, one of which serves as a default rule and the
other of which is a probabilistic rule that is applied with some proba-
bility. To consider the mutation of the COVID-19 rule, we employ a set
of TSCAs. Each TSCA is considered as (f, g)[τ ] and at a time the ap-
plied TSCA is chosen from the set. The model evolves using two TSCA
rules f and g, where f is represented as the propagation of the virus, g
is represented as recovery function and g is applied with probability τ .
The model is validated on the basis of a real-time dataset of spreading
Coronavirus (SARS-COVID-19) over the world. This proposed model
depicts the spreading scenario of the novel Coronavirus which has caused
a global pandemic.

We consider periodic boundary condition, where the first and last row
of cells are neighbors to each other, whereas, the first and last column of
cells are neighbors to each other. Temporally stochastic cellular automata
(TSCA) where at a time step, a cell can be updated using one of the two
rules f and g. Here, f is the virus spreading rule for the CA, whereas,
g is the immunity and is applied with some probability. That is, rule g
is applied with probability τ ∈ [0, 1] whereas the rule f is applied with
probability (1−τ ). We call τ as the rate of immunity. This way of looking
at these rules makes both of them temporally stochastic. Therefore,

y =

{
Gg(x) with probability τ

Gf (x) with probability 1− τ

where, Gg(x)|i = g(s1, s2, s3, · · · , s10) and Gf (x)|i = f(s1, s2, s3, · · · , s10).
The proposed system specification is written as (f, g)[τ ]. The rate of
transmission of the virus varies depending on the time of year, some-
times being quite high and other times being very low. As a result, we
have considered a set of TSCAs and each of the TSCAs that we have
employed for varying periods of time represents (f, g)[τ ] in our model.
We have used a set of TSCA rules, to simulate our model, (f1, g1)[0],
(f1, g1)[0.3], (f2, g2)[0.3], (f3, g1)[0.3], (f3, g3)[0.3].

We assume that, initially, the state of all the cells is considered to be 0
and only one cell is set to state 1. Here, we consider white cell for state 0,
black cell for state 1, Fig. 1a shows the initial configuration for the model.
Fig. 1b, Fig. 1c and Fig. 1d show the intermediate configurations for the
simulation which demonstrates several COVID-19 spread scenarios at
various time. white cell indicates un-infected cells whereas black cell
indicates infected cells. Fig ?? shows the graph representation of our
simulation, where Fig 1e shows the growing of infected cells (switches
to state 1) with respect to time. Fig 1f depicts the number of infected cells
over the grid for different time period.

For the study, we choose COVID-19 spreading data set which are taken
from https://www.kaggle.com/datasets/imdevskp/corona-virus-report

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) Initial configuration of the CA; (b) Configuration shows
the first wave of spreading virus; (d) Configuration shows the rising of
second wave; (e) Number of confirmed cases ( switches to state 1); (f)
Shows the wave of spreading the virus;

, we employed three cases: confirmed cases, recovered cases and the
wave. The spreading accuracy of the proposed model is compared with
real time data sets. We observed that our proposed TSCA model dis-
plays the identical circumstance like a real-time scenario and it becomes
effective and performs effectively for other circumstances as well.

We may consider this model as a generalized model of spreading of this
sort of viruses in future by only changing the set of TSCA rules (tune the
parameters f, g, τ to form a TSCA).

Submitted to Indian Summer School on Cellular Automata 1

https://www.kaggle.com/datasets/imdevskp/corona-virus-report


Indian Summer School on Cellular Automata

Finding the Inverse Cellular Automata of a given 1-D
Reversible CA
Khitish Kumar Gadnayak
Mentor: Kamalika Bhattacharjee

August 23, 2022

Reversibility is one of the important characteristic in the domain of cel-
lular automata since it gives the notion of preserving the information
during the evolution. This property leads to give wide aspect of appli-
cations in many real life scenarios. The main objective of this project
work is to analyze the bijectivity property of the reversible CA with
the help of state transition diagram (STD). This report also describes
the modeling approach by mapping of bits of transition states with the
rule minterm (RMT) sequences to obtain the inverse function for the
reversible and semi-reversible CAs. The reversibility property of the
cellular automata describes the preservation of information during the
evolution of the cellular automata. The reversibility property also signi-
fies that the each configuration has an preimage or predecessor. Due to
the inherent characteristics the reversible CAs are widely used in pattern
generation, cryptography, pseudo-random number generation , language
recognition.

In our project work, we consider the nature of transition of states of the
reversible cellular automata with the help of state transition diagrams and
establish the relationship between the different rules of ECA and their
inverse functions. We also map the transition of the states in order to
analyze the injective and surjective properties of the reversible cellular
automata. Figure 1 describes the state transition diagram and the mapping
of states to show the bijective property that the CA with rule number 15
which is a reversible CA for a 4-cell under periodic boundary condition.

Figure 1: (a)State Transition Diagram (b)Mapping Function

In the next phase of our project work we propose an approach to find the
inverse function of the reversible CA for a 4-cell perodic boundary con-
figuration by considering the transition states in a reverse order. In the
mapping we consider a window of size three for 3-neighborhood struc-
ture for two successive configurations and then we trace the change in
the corresponding bit of the window for a map of that changed bit in
the RMT sequences.After mapping of all bits in RMT sequences we ob-
serve the inverse function rule by finding the decimal equivalent of the
RMT bits arranged from left to right with MSB in the left and the LSB in
the right. Figure. 2 describes the mapping process for finding the inverse
function.

As in the initial phase, we consider the CA under periodic boundary
condition for cell size of 4. Then in successive cases we investigate the
inverse rule finding approach for cell sizes of 1, 2, 3, 5, 6 and 7 respec-
tively. Therfore we propose a generalized approach for the finding of
inverse rule for reversible CA of length n.

Figure 2: Rule mapping for inverse function(Rule-15)

We propose a generalized appraoch for find the inverse rule for a re-
versible CA for length of size n. From the observations and work analysis
of all the ECA rules, the reversible CAs of length n under periodic
boundary conditions are listed in Table. 1.

Table 1: List of Reversible ECAs

Reversible ECAs
Rule No. Inverse Function Rule Relationship

15 85 Both rules are inverse of each other
170 240 Both rules are inverse of each other
51 51 Inverse functioned rule of itself
204 204 Inverse functioned rule of itself

The previous paragraph describes the finding of inverse rule for reversible
CA for ECA rules of cell size n under null boundary conditions and in
this section we extend our analysis further to

find the inverse rule for the semi-reversible CA.

In our analysis, we consider different non-trivial semi-reversible CA
rules like rule-45, rule 154 and rule 105. The non-trivial rule 45
and rule-154 are reversible for odd values of n that means, for n =
1, 3, 5, 7, · · · where as rule-105 is a reversible CA for n values like
n = 1, 2, 4, 5, 7, 8, · · · and n ̸= 3k, ∀k ∈ N . We try to consider the
same mapping processes discussed in previous section to

nd the inverse rule for the above mentioned semi-reversible cases. From
the work analysis we observe some salient features those are listed below:

• The algorithmic approach for reversible CA is true for semi-reversible
CA for n = 1 and n = 3 and the inverse rule is rule-101 with a three
neighborhood mapping process.

• imilarly for rule-154, the inverse rule mapping approach is true for n =
1 and n = 3 and the inverse rule is rule-180 with a three neighborhood
mapping process.
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This work focuses on the isomorphism of cellular automata (CAs). Two
cellular automata are said to be isomorphic if their configurations evolve
in the similar way. As a model, here we use non-uniform elementary cel-
lular automata under null boundary and discover few inherent properties
of CAs to decide whether the given cellular automata are isomorphic.

Cellular automata are discrete dynamical systems which produce com-
plex global behaviour using simple local computation. The configura-
tions of a cellular automaton (CA) evolves with time. A configuration
is said to be reachable if it has some predecessor configuration; other-
wise, the configuration is non-reachable. Let G be a CA and C be the
configuration space. Let G(x) = y and G(z) ̸= x where y is reachable
configuration and y is reachable from x; Now, c is not reachable from any
configuration z. Therefore, x is non-reachable. In finite CA, every con-
figuration ultimately reaches to some cycle. The configuration which is
used to form a cycle, is called a cyclic configuration. The length of a cy-
cle is determined by the number of cyclic configurations it possesses. The
configuration which is not cyclic, is called as acyclic. The cycle structure
of a CA is the collection of the number of cycles along with their lengths.
If all the configurations of a CA are cyclic, then such CA is reversible;
otherwise, the CA is irreversible.

Let G1 and G2 be two ECAs of same size having same configuration
space C. G1 and G2 and are said to be isomorphic if there exists a bijec-
tive mapping π : C → C such that G1(x) = y iff G2(π(x)) = π(y)
where ∀x, y ∈ C. It is very challenging to figure out π and not much
work has been found on the isomorphism in cellular automata. Thus we
are motivated to find some intrinsic properties of cellular automata which
play the instrumental role to decide of isomorphism in CAs. In our work,
we use reachability tree, which is a rooted and edge-labelled binary tree
that decides the reachable and non-reachable configurations of CA. This
tool is used to develop some properties on the isomorphism in cellular
automata.

Property1: Two CAs G1 and G2 are said to be isomorphic if both be
reversible or both be irreversible but the converse is not always true.

If Property1 is not satisfied by the given G1 and G2, then they are
not isomorphic. Therefore, we test the reversibility of the given non-
uniform CAs (using the algorithm of O(n)) and if we find that G1

is reversible CA and G2 is irreversible CA, then they are not isomor-
phic. Let (10, 150, 90, 20) and (2, 150, 90, 20) are given CAs. Here,
(10, 150, 90, 20) is reversible CA but (2, 150, 90, 20) is irreversible CA
as 2 can not be the first rule of any reversible CA. Therefore, Let
(10, 150, 90, 20) and (2, 150, 90, 20) are not isomorphic.

As Property1 is a necessary condition to decide isomorphism in cellular
automata, we need to figure out some more properties on CAs when G1

and G2 both be reversible or both be irreversible.

Now, in reversible CAs, as all configurations are cyclic, for deciding
isomorphism, we need to check whether they have same number of cycles
along with same lengths.

Property2: Let G1 and G2 be reversible cellular automata. They are said
to be isomorphic iff both the CAs have the same cycle structure.

Figure 1: Reversible CAs

Here, (9, 142, 165, 65) and (6, 232, 90, 20) are isomorphic CAs as they
have same cycle structure [2(1), 1(3), 1(11)]. Though few works have
been reported on the computing of cycle structure of reversible CAs but
its inherent hardness still makes it as a challenging problem. So, we are
motivated to figure out some properties of isomorphic reversible CAs.

Next we focus on irreversible CAs. To study the isomorphism in irre-
versible CAs, other than cycle structures of those CAs, the count of
acyclic configurations play an instrumental role.

Property3: Let G be a CA of size n. In the reachability tree of that CA,
if ki denote the number of non-reachable edge(s) at the level i of that
tree, then the total number of non-reachable configurations(s) of that CA
is
∑n−1

i=0 ki × 2n−1−i.

Property4: Let G1 and G2 be irreversible cellular automata. They are
said to be isomorphic if both the CAs have the same number of non-
reachable configurations but the converse is not always true.

If Property4 is not satisfied by the given G1 and G2, then they are
not isomorphic. To check the count of non-reachable configurations, we
should use the reachability tree as a tool.

Here, (1, 135, 92, 5) and (10, 60, 86, 20) are not isomorphic cellular au-
tomata as they have total number of non reachable configurations 3 and
4 respectively. Next, we need to deduce some more properties of CAs for
determining isomorphism when they have sane number of non-reachable
configurations.
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Image segmentation is one of the most important image processing tech-
niques for biological images. Till now, various Cellular Automata(CA)
rules have been used for segmentation. For updation of states of the cell,
conditional rules using Von Neumann neighbourhood and Moore neigh-
bourhood were used. In this work, instead of taking one seed point per
image, multiple seed points are used for segmentation. A dataset of mi-
croscopic images has been taken and various segementation rules have
been used for analysis.

A significant number of diagnostic procedures in modern clinical prac-
tise, as well as medical and biological research, now depend on the whole
range of medical imaging technology. The manual procedure of screen-
ing microscopic slides requires subjectivity. Finding the boundaries of
cells, cell nuclei, and histological structure in images of stained tissue
with sufficient accuracy is referred to as segmentation in microscopic
images. The goal of segmentation is to make an image representation
simpler while also making it more significant and easier to examine. The
regions must be relevant to shown objects or features of interest in order
to be significant and valuable for microscopic image analysis and inter-
pretation. The difficulty in accurately segmenting each cell, as well as
the wide variability in the features of each component, make this a dif-
ficult job. Here in this proposed work, an existing dataset has been used
for analysing multi-seed segmentation where the updation rule considers
Von Neumann and extended Moore neighbourhood. In order for segmen-
tation to be more prominent depending on the quality of the input images,
thresholding plays a crucial role in image segmentation. Here, the upda-
tion rule using Von Neumann neighbourhood is based upon thresholding,
where the same using Moore neighbourhood relies on maximum and
minimum state. Results have been analysed from the images, segmented
using these rules.

Segmentation simply refers to breaking up an image into various items
or regions. The region of interest is labelled as the foreground in the
segmentation, and the remaining portions of the image are labelled as
the background. It takes a lot of time and effort to manually segment.
The work is typically accomplished by marking the object of interest.
However, this approach does not always produce correct results. We re-
quire an automatic image segmentation technique that produces precise
results with minimal user input. Cellular automata are utilised in this au-
tomated procedure. An image is made up of pixels that can be thought
of as cells, which is the basic idea behind employing cellular automata
for automatic segmentation. The segmentation of an image is based on
the image’s characteristics, such as intensity and other properties that
are derived from intensity.The classification of a pixel as foreground or
background also depends on the neighbouring pixels. This is because the
segmentation of the image also depends on the value of the intensities of
the pixels in the pixel’s neighbourhood. Edge detection and thresholding
are the fundamental concerns in image segmentation. Various threshold
values may result in segmented images with varying levels of clarity.

Wongthanavasu and Sadananda suggested a method based on a condi-
tional rule for updating the state of the states. This rule can be represented
as:

vc+ =

{
0 if vc ≤ vmax − vmin

vmax − vmin, otherwise

In order to approach an edge detection strategy, A. Popovici and
D.Popovici took into account the different state differences between the
neighbouring pixels in accordance with the Von-Neumann idea and the
central pixel. Here, all absolute state differences have been considered
in the comparison. The central pixel’s state will be 0 if the differences
are more than the given threshold. Otherwise, it remains unchanged.This
rule can be expressed as follows:

vc+ =

{
0 if |vi − vc| ≤ ϵ

vc, otherwise

The region of interest can be segmented more successfully by using cellu-
lar automata-based segmentation approaches. By using various transition
rules, characteristics from various imaging modalities can be retrieved
that could be useful in biological images.

Applying these above updation rules to multiple seeds,it is found that,
the updation rule using Von Neumann neighbourhood often gives better
result than the Moore neighbourhood e.g.,

Figure 1: Original image, segmentation using Von Neumann CA &
Moore neighbourhood CA
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In our everyday life, we can find a diverse range of materials that each
have their own characteristic properties that decide which applications
they can be employed in. Thus, we often group materials by their shared
characteristics into groups such as metals, fabrics, glasses and so on. The
properties of a material are closely correlated with its structure on the
microscopic scale. Hence, it is very important to study and understand
how the microstructure of a given material affects its response to certain
conditions and thus, affects its characteristic properties.

Materials are composed of atoms or molecules and how these elements
are arranged in three-dimensional space affects their interactions and
their properties as well. When there is a regular ordered arrangement
of atoms over a long distance, that material can be called crystalline
and when the ordered arrangement of atoms is observed over a much
shorter range, the material is deemed amorphous. Crystalline structures
often arise when the material in consideration undergoes solidification
from liquid to solid state. As the material is cooled, small nuclei that
each have a particular orientation of crystalline structure expand to form
large grains. The boundary separating two adjacent grains of different
orientation is called the grain boundary.

Intergranular cracking occurs when a crack propagates along the grain
boundaries of a boundary, usually when these boundaries are weak-
ened. This can be compared to a wall of bricks where cracking takes
place in the mortar that joins these bricks together. Intergranular crack-
ing is likely to occur if there is a hostile environmental influence and is
favoured by larger grain sizes and higher stresses. Though there are sev-
eral mechanisms for intergranular fracture, all of them revolve around
grain boundary orientation and the presence of solutes and impurities.

Our model takes an input of the desired number of nuclei, which are
then distributed at random throughout the domain. For this system,
we are considering 18 different grain orientations associated with their
own unique colours. Conventionally, cellular automata are associated
with square discretization but here we have implemented hexagonal dis-
cretization and attempt to undertake a qualitative comparison between
them.

By applying a specific rule to evolve the automata synchronously, we can
observe the nuclei that were introduced at the start of the evolution grow
into large grains and develop grain boundaries. The rule implemented
here is such that, the cell under consideration will also solidify or become
alive if there is at least one live cell in the neighbourhood or radius 1. The
use of hexagonal cells gives us a unique grain boundary shape compared
to square cells that may appear more jagged upon close observation. By
testing different neighbourhoods and rules, we were able to identify a few
combinations that resulted in a satisfactory model for a polycrystalline
system. One important thing to note is that once cells become “alive”
or nucleated they should not be able to return to their dead state. After
obtaining this polycrystalline structure, we are able to apply a rule to
model the crack as it propagates along the grain boundary between two
or more grains. This rule is capable of deciding between two paths where
a junction between three or more grains is formed in the domain. Thus,

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a), (b), (c), (c) Three Nuclei developing into Polycrystalline
System; (e), (f) Intergranular Crack Initiation and Propag ation along the
green and blue boundarie;

the model is able to create a polycrystalline structure which can then be
used as a sample to effectively model the growth of a crack across the
domain as shown below.

It is also worthwhile to note that this model is not limited to materials
science related applications. As the model is able to select a path at a
junction of two or more possible options, it may be used as a path find-
ing algorithm. If one were to consider the grains to be mountains with
the centre of each grain being its peak, and the grain boundaries the nar-
row valleys at ground level; the model can be construed as a path finding
algorithm that can be applied in mountainous terrain. We hope to ex-
pand this project to also model intergranular crack propagation within
the grains and search for other potential applications outside the domain
of materials science.
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Reversible computation has garnered a lot of attention over the
years,Though studied extensively in a great variety of synchronous
computation models, it is virtually unexplored in an asynchronous frame-
work. While discussing asynchronous frameworks, alpha asynchronous
cellular automata is a niche topic in the discussion of reversibility. Alpha
Asynchronous cellular automata update their cells according to the value
of alpha, since most of the updation process is based on probability, the
experiments to be done to decide on the reversibility was done over a
range of CA sizes. Further 88 rules were identified which depicted the
characteristics of the 255 rules , and a sample of 10 probabilities were
taken and experiments were conducted for all initial configurations for a
given CA size and given value of alpha.

Definition 0.1. An elementary cellular automaton is a one-dimensional
cellular automaton where there are two possible states (labeled 0 and 1)
and the rule to determine the state of a cell in the next generation depends
only on the current state of the cell and its two immediate neighbors.

Definition 0.2. A reversible cellular automaton is a cellular automaton
in which every configuration has a unique predecessor.

Definition 0.3. An α-asynchronous cellular automaton is able to update
individual cells independently, depending on the probability α

The set of 255 rules were reduced down to 88 characteristic rules, and
a sample set of 10 probabilities were taken and for a range of CA sizes
all initial configurations were checked for reversibility.While classifying
rules each of the configurations were converted into their decimal repre-
sentation and were plotted as a network of states and for the theoretical
results a list of all the possible configurations for a given initial configu-
ration and if the configuration list contains the initial configuration more
than once then it can be declared as being reversible for that configura-
tion , for a given alpha value and given CA size. Probability Values :
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

Rules : 0 , 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,18 ,19 ,22 ,23 ,24
,25 ,26 ,27 ,28 ,29 ,30 ,32 ,33 ,34 ,35 ,36 ,37 ,38 ,40 ,41 ,42 ,43 ,44 ,45
,46 ,50 ,51 ,54 ,56 ,57 ,58 ,60 ,72 ,73 ,74 ,76 ,77 ,78 ,90 ,104 ,105 ,106
,108 ,128 ,129 ,130 ,131 ,132 ,133 ,134 ,136 ,137 ,138 ,140 ,142 ,146
,150 ,152 ,154 ,156 ,160 ,161 ,162 ,164 ,168 ,170 ,172 ,178 ,184 ,200
,204 ,232

Sizes :3 ,4 ,5 ,6 ,7 ,8 ,9 ,10

For a given CA size, a given rule the classification is as follows:

Reversible:

• For all alpha values

• If all configurations are reversible then it is Reversible

Irreversible:

• For all alpha values

• If some configuration is irreversible then it is Irreversible

Partially Reversible:

• For some alpha values

• If all configurations are reversible then it is partially reversible

Now generalizing this classification over all values of alpha and CA sizes.
The rules can be classified as:

Reversible:

• For all alpha values

• If all configurations are reversible then it is Reversible

• Example: 204

Irreversible:

• For all alpha values

• If all configurations are irreversible then it is irreversible

• Example: 0,2,4,6,8

Cell Size-Partially Reversible:

• For some alpha values

• If all configurations are reversible then it is Cell Size-Partially Re-
versible

• Example: 1,3,7,9,11

Cell Size-Reversible:

• For some CA sizes

• For all alpha values

• If all configurations are reversible then it is Cell Size-Reversible

• Example: 19,27,33

Table 1: Observations

Irreversible

0,2,4,5,6,7,8,10,12,13,14,15,
18,24,26,29,32,34,36,38, 40,

42,44,50,72,77,78,104,106,128,
130,132,133,136,138,150,152,154,

160,162,168,170,178,184,232
Reversible 204

Cell Size-Reversible
19,27,33,35,37,41,43,

45,51,57,105,142

Cell Size-Partially-Reversible

1,3,7,9,11,22,23,25,28,30,46,54,
58,60,73,74,76,90,10 8,129,

131,134,137,140,146,156,161,164,
172,200

All 88 rules that are representative of the 256 rules were classified and
the only completely reversible rule is Rule Number 204. Other rules are
dependent on the CA size and alpha values. The ratio of completely
irreversible rules to reversible rules(partially, CA size reversible and
completely reversible) are 1:1 as there are 43 rules that are reversible to an
extent but the other 45 are completely irreversible. In conclusion except
1 rule (204) all other rules are either partially reversible / irreversible.
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In this project we studied the behavior of 2D linear Automaton generated
by linear rule under the null boundary condition over the field Z2 transi-
tion matrix or rule matrix of this cellular Automata by represent each cell
of block into linear form 1, 0 according to dependency and independency
of each cell respectively determined by applied rule .viz,for 2 × 2 block
there is 4 cell, we identified each cell by the number 1, 2, 3, 4 and for
each cell like cell number 1,we put 1,0 if it is dependent or independent
to particular that cell in appropriate order respectively, corresponding to
each cell we get one representation and ultimately we obtain a 4× 4 ma-
trix, for 3 × 3 matrix we obtain 9 × 9 order matrix. We are characterize
this Automata by using matrix rule and able to Identify Reversibility of
this Automata by calculating the Determinant of the Rule matrix. Lastly,
we checked Reversibility of 2× 2 block and 3× 3 block for all 32 rules
over Z2 field.

Table 1: Results for 2× 2 Block

Rule Reversible/Irreversible
Rule 0 Irreversible
Rule 1 Reversible
Rule 2 Irreversible
Rule 3 Irreversible
Rule 4 Irreversible
Rule 5 Irreversible
Rule 6. Irreversible
Rule 7. Reversible
Rule 8. Irreversible
Rule 9. Reversible

Rule 10. Irreversible
Rule 11. Reversible
Rule 12. Reversible
Rule 13. Irreversible
Rule 14. Reversible
Rule 15. Reversible
Rule 16. Irreversible
Rule 17. Reversible
Rule 18. Reversible
Rule 19. Reversible
Rule 20. Irreversible
Rule 21. Reversible
Rule 22. Irreversible
Rule 23. Irreversible
Rule 24. Irreversible
Rule 25. Irreversible
Rule 26. Irreversible
Rule 27. Irreversible
Rule 28. Reversible
Rule 29. Reversible
Rule 30. Reversible
Rule 31. Reversible.

Working procedure: Rule 31 :This is an example of a Reversible
Automata

Figure 1: Working procedure of Rule 31; This is an example of a Re-
versible Automata ;
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This paper contains the keen observations and research on factors of
convergence, converging rules and attractors of Alpha-Asynchronous
Cellular automata. Our experimentation will be on elementary cellular
automata from alpha values 0.1 to 1.0 for a set of 88 minimal rules. In
this process our main focus is to track converging rules and record them.
To get this information we developed a program that takes alpha values
and rules as input and returns above mentioned information as output.
Our second focus will be on recording the attractors. In this project we
consider 2-state (0 or 1) 2-neighborhood one Dimensional Cellular au-
tomata. In which cell state transition takes place with help of 0 − 255
Binary rules. In simple words an initial configuration is set and some rule
is applied from the given rules to it to reproduce further configurations
and self replication. For every possible neighborhood there will be a re-
spective state assigned to it. According to this evolution takes place in
configurations.

Generally in Cellular Automata cell updation or state transition takes
place synchronously considering time as discrete, but in case of asyn-
chronous Cellular Automata the cell updation takes place asynchronously
irrespective of time. Convergence is a phenomenon of where a system
cannot come back to its initial configuration after moving out of the con-
figuration. Rather the system, in course of its evolution, settles down to
a configuration (convergence point) or to a small set of configurations.
A range of physical systems show this convergence phenomenon. Dur-
ing the evolution of α-asynchronous cellular automata at one particular
stage all configurations converge to a fixed point (fixed configuration).
We call this fixed point. Our main interest is on type 4 (see in Figure. 1),

Figure 1: 4 types of evolutions observed in α- asynchronous CA

to recognize all of the converging rules under different alpha values and
we record them. We developed a program which generates output that
consists of CA sizes that shows convergence for every alpha value of a
set of rules under periodic boundary conditions. There are 256 rules in
ECA but some of the rules show the evolution of the same behavior. So
we take rules of unique behavior and avoid the similar types. The pro-
gram takes rules as input. And outputs two text files. First File consists
of information about for every rule under all alpha values whether the
rule shows convergence or not. Second File consists of all attractors with
respect to rule only if that rule Shows convergence. From the information
obtained by the first File we plot a table that shows convergence proper-
ties of the given 88 rules under all alpha values i.e. from 0.1 to 1.0 with
CA sizes 4 to 10. From the Figure. 2, the information we took the rules as
convergible if and only if they are totally covergible under all given con-
ditions. To show an example of table, In Figure. 2 rule 0 characteristics

Figure 2: Rule-0 satisfying all the given condition.

are shown under every condition i.e., Alpha value and CA size the rule
shows convergence.(converged represents tick mark, first tick tells for al-
pha 0.1 and CA size 4 the evolution is converged). Because of this we
finalize that Rule 0 shows convergence. After performing multiple tests
and program executions we found the following rules that show conver-
gence in α -Asynchronous Cellular Automata.The list of rules (47 rules)
show complete convergence- 0, 2, 4, 8, 10, 12, 22, 24, 32, 36, 38, 40, 42,
44, 54, 56, 72, 74, 76, 78, 90, 104, 106, 108, 128, 130, 132, 136, 138,
140, 142, 146, 150, 152, 154, 156, 160, 162, 164, 168, 170, 172, 178,
184, 200, 204, 232. Attractors of a rule cannot be recorded because we
use a randomizer function to the cells of eca, because of this every time
we execute the program, the randomizer function may produce 0th or
originally existing state. Due to this phenomena, the evolution of cellular
automata is different for every cycle of execution.

If the random value generated by the randomizer function is less than
alpha value for a cell in Lattice then that cell state is set to zero in Al-
pha Asynchronous CA. (Remaining cells follow the transition function
in other words, RULE).

Random(0.1 to 1.0) < α (1)

Here we are taking an example of CA size 12 assuming some alpha value.
When we execute the program 2 times, we look two scenario (see in
Figure. 3).

Figure 3: Execution of the program for 2 times

In second case (see Figure 3, Cell 1, Cell 4, Cell 5, Cell 6, Cell 11
are set to state 0. Due to this phenomena it is impossible to get the
same attractors every time. So with this reason we are unable to record
attractors.
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In this work, it has been tried to showcase the Dynamics of the Stock
Market with the help of a 2D Cellular Automata. The Active Traders
are characterised by the states +1(Buying Stocks) and -1(Selling Stocks).
The Inactive Traders are characterised by 0 State. Some Simulation
Rules(For changing the State of the Traders from Active to Inactive and
Vice Versa) are applied and the simulation is done. Based on that Simula-
tion, some Graphs are plotted. After that, Simulation rules are Tweaked.
Instead of checking the Neighbours and keeping the condition on the ba-
sis of at least 1 Neighbour in the Simulation Rules, K and l Neighbours
are respectively checked for the Rule(1) and Rule(2) of Simulation where
K and l are taken from the Set 1,2,3,4. Graphs are obtained and along
with that some Drastic Changes are also observed in the Dynamics of
the Market. We witness the Strictly Increasing Graphs of the Simulation
to become sometimes Strictly Decreasing when the K and l values are
Increased. In the later part of the analysis, we take The Global Neigh-
bourhood Condition for the Simulation to resemble the Real Life Stock
Market. These Neighbours are Fully Random in nature. Since, we are
considering 512×128 Grid, so we have 65,536 cells and out of those cells,
these Global Neighbours are Randomly Chosen and preferably they don’t
collide with the Local Neighbours. There we observe some Interesting
Changes in the Dynamics of the Market. The Graphs remain Strictly In-
creasing for a very long extent of time as compared to the Most Initial
Model. A 512× 128 Grid is taken where each cell can have 3 states, pre-
cisely, 0,+1 and −1. 0 indicates an Inactive Trader who is not involved
in the Market; +1 indicates an Active Trader who is buying some stocks;
−1 indicates an Active Trader who is selling some stocks.

Now, initially a Random Configuration is taken and then the simula-
tion is continued for generations to get some Interesting Observations.
The Initial Random Configuration guarantees to have not more than 27%
of Active Traders. Von Neumann Neighbourhood is considered for the
simulation. The rule is as follow,

1. If a Cell is in State 0 and at least 1 of its Neighbours is in State 1, then
with Probability PH, it gets converted to State (+1 or -1).

2. If a Cell is in State 1 and at least 1 of its Neighbours is in State 0, then
with Probability PD, it gets converted to State 0.

3. If a Cell is in State 0, then with Pc Probability, it gets converted to
State (+1 or -1).

In Figure. 1, Black Cells represent Inactive Traders and Non-Black Cells
represent Active Traders. As per the Instructions and values given in the
Paper, we do the fine Tuning of the Value of PH . We take Fixed values for
PC = 0.0001 and PD = 0.05. Then we take 5 Different Values of PH as
[0.0493, 0.0490, 0.0488, 0.0485, 0.0475]. Then we simulate using these
values and plot the Graph between Number of Active Traders(Y-Axis) vs
Number of Generations(X-Axis) (see in Figure. 1c). The Graph obtained
is Strictly Increasing and finally settles and becomes almost constant
within the range of 35, 000− 40, 000.

In the Previous Main Model, as per the Given Conditions (1) and (2),
only 1 Opposite Neighbour can make the cell toggle from its state to an-
other on a certain Probability. But, if we changed that quantity of 1 to
K and l maybe respectively for the Rules, then a very Interesting Result

(a) (b)

(c)

Figure 1: Diagram for PD = 0.5, PH = 0.6, PH = 0.3 and simulated
for 1,00,000 Generations. (a) Initial State; (b) Final state; (c) The Graph;

comes in Picture. Where K, l ∈ 1, 2, 3, 4
Revised Rule(1): If a Cell is in State 0 and at least K of its Neighbours
is in State 1, then with Probability PH , it gets converted to State (+1 or
-1).
Revised Rule(2): If a Cell is in State 1 and at least l of its Neighbours is
in State 0, then with Probability PD , it gets converted to State 0.
Till now, we have seen the Neighbours to be Local Von Neumann Neigh-
bours to be considered for Simulation. But in this second version of the
Extended Model, Global Neighbours have been taken into picture so as to
get some Insights about the Effect of the Market as a whole to a Particular
Cell(A Trader to be precise). But in Real Life, the Stock Market’s Traders
are not only dependent on their Local Neighbours, for being converted
from Active to Inactive and vice versa, but also somehow dependent on
the Global Neighbours. Since, we are considering 512 × 128 Grid, so
we have 65, 536 cells and out of those cells, these Global Neighbours
are Randomly Chosen and preferably they don’t collide with the Lo-
cal Neighbours. Following are the two cases Considered with respect to
Global Neighbourhood Condition:

• 2 Local Neighbours(Randomly chosen from 4 Von Neumann Neigh-
bours) and 2 Global Neighbours(Randomly chosen from the whole
Board).

• 3 Local Neighbours(Randomly chosen from 4 Von Neumann Neigh-
bours) and 1 Global Neighbour(Randomly chosen from the whole
Board).
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1-dimensional three-neighborhood binary irreversible cellular automata
(also called elementary reversible cellular automata or ECA) is a well ex-
plored field both with respect to theory and applications. The irreversible
behavior of such CA, convergence property for point attractors has been
studied in detail for null boundary CA, as well as periodic boundary con-
ditions. The feature set of this cellular automata consists of only binary
numbers 0, 1. As a result, we may believe that this may lead to some
restrictions of such a pattern classifier in its ability, accuracy, capacity
and range of classification. Also, when compared to the real world data,
a 2-feature CA really falls short as most data has the number of features
spread across the discrete number space.

To solve this problem and test out the pattern behavior, classification and
dynamics of the d-state cellular automata, we wanted to first use 3-state
1-dimensional CA (uniform and non-uniform) for pattern classification.

Since there was no pre-existing tool for studying the dynamics of 3-state
cellular automata, finding the number of point attractors for each rule and
the rule space being too large and unfiltered to work with, we devised a
2-step methodology to study the dynamics of the CA as well as reduce
the rule space to some extent to reduce complexity.

1. We derived a mathematical formula to subgroup d-state CA into dn+1

such groups based on some conditions, which we proved correct as
well as extended along the discrete number space for any d-state CA.

2. We then used the rule numbers from within the selected groups that
would be a good fit for our classifier by studying the dynamics of
the 3-state CA rules using a self-designed algorithm. We only select
those rules for classification that give only point attractors as reversible
configuration can give misleading results for our classifier.

As future scope for our research, we wish to extend our work and imple-
ment a pattern classifier using these selected rules from the reduced rule
space. We also plan to find more rules in lower number groups that may
be suitable for implementing pattern classifiers.
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